

Parallel Programming Design Notes

Bill Rubin

February 23, 2010

• Input Queue: Each thread has its own input queue of numbers. All accesses to
each queue must be made thread-safe (serialized).

• Worker Thread Overview: A worker thread takes the first number from its
input queue, processes it (actually does some Hard Work, see below), and pushes
the resulting number onto the input queue of the next thread. The last thread has
no “next thread”, so it just throws away the result.

• Enqueueing Event: After a thread pushes a number onto a queue, it notifies the
(possibly waiting) worker thread by setting an “item enqueued” event.

• Main Thread: The main thread generates 1,000 random numbers and pushes
them, one at a time, onto the queue of the first thread. Then it requests the first
thread to terminate, by setting a terminate event for that thread, then waits for that
thread to terminate, and then exits.

• Worker Thread Event Handling: A worker thread begins by waiting for an
event, either “item enqueued” or “terminate thread”. When either event occurs,
the worker thread iteratively processes the queue elements until the queue is
empty. Then …

• Orderly Termination: … if the event was “item enqueued”, the thread waits for
another event, but if the event was “terminate thread”, the thread requests the next
thread to terminate (if this isn’t the last thread), waits for that to happen, and then
exits itself. In this way, all worker threads and the main thread terminate in an
orderly way in reverse order. (N-th thread terminates first; main last.)

• Hard Work: The initial random number is between 1 and 10,000. Every number
on every queue is in that range. The hard work done by each thread is as follows:
Given input integer k, square it, and then take the residue modulo 9999 of that.
Repeat this 106 times. This takes about 10 mS on one of my 2.5 GHz processors.

• Minimal contention among threads: The design is such that all threads
essentially operate independently and in parallel on scalars. The only contention
among threads is in the relatively short time where queues are being accessed.

• Performance (rough measure): With one worker thread, a run consists of 2 × 106
floating operations for each of 103 numbers, or 2 × 109 operations. This run takes
about 10 seconds. Therefore, we have 2 × 108 FLOPS. But that one worker
thread can run on only one processor at a time, and there are 4 processors in my
Xeon quad. Therefore, the total measured power is 4 × 2 × 108 FLOPS, or 8 × 108
FLOPS, or close to 109 FLOPS or 1 GFLOPS. Reasonable, for a total processor
power of 10 GHz.

